ua logo
links
docs

harris banner

Department of Cellular and Molecular Medicine

harris portraitLaboratory of Samantha Harris

Cardiac muscle mechanics; regulation of myocardial contraction; molecular basis of inherited cardiomyopathies; myofilament proteins

The long-term goal of research in my lab is to understand the molecular mechanisms of muscle contraction. I am especially interested in how contractile proteins of muscle sarcomeres regulate the force and speed of contraction in the heart. The question is important from both basic science and clinical perspectives because mutations in sarcomere proteins of muscle are a leading cause of hypertrophic cardiomyopathy (HCM), the most common cause of sudden cardiac death in the young and a prevalent cause of heart failure in adults. Myosin binding protein-C (MyBP-C) is a muscle regulatory protein that speeds actomyosin cycling kinetics in response to adrenaline (b-adrenergic stimuli) and is one of the two most commonly affected proteins linked to HCM. Currently, the major research focus in my lab is understanding the mechanisms by which cMyBP-C regulates contractile speed and mechanisms by which mutations in cMyBP-C cause disease.

In pursuing these interests I have established a variety of approaches to investigate muscle contraction at molecular, cellular, and whole animal levels. Methods include single molecule atomic force microscopy (AFM), mechanical force measurements in permeabilized muscle cells, in vitro motility assays, biochemical enzyme and binding assays, immunofluorescent imaging, knockout/transgenic animal models and the development of a natural large animal model of HCM.

footer
research contact links people home about contact research people training giving “University “UA “sarver antin colson desai doetschman granzier konhilas krieg ottenheijm gregorio tardiff